Electron Theory of Metals

1. INTRODUCTION

There are many fundamental properties of solids, e.g. electrical and thermal conductivities, magnetic and
optical properties, etc. depend upon their electronic structure. We can understand many physical properties
of solids in terms of electron theory of solids. The development of the electron theory of solids, started in
the beginning of the 20th century. Today, it is the basis for the classification of all solids. When free
electron theory applied to metals, it explains forces of cohesion and repulsion, binding the energy levels
and the behaviour of conductors and insulators and magnetic materials. According to this model, the
valence electrons of the constituent atoms become conduction electrons and move about freely through the
volume of the metal.

The first version of the free electron model was introduced by P. Drude in the early 1900s, with
improvements soon after by H.A. Lorentz. This is now known as Drude-Lorentz free electron theory. The
other theories are:

(i) Sommerfeld free-electron theory

(i) Zone Theory

2. METALLIC BONDING

In chapter 4, we have already discussed about metallic bonding. In the metal, the valence electrons are free
to move in different directions. The valence electrons inside the metal are called free electrons and move
inside the metal, constrained only by the surface of the sample. Collisions between electrons are neglected.
The binding forces in the metals are due to the electrostatic attraction between the positive ions and negative
cloud or dilute gas of electrons. Such a free electron model was first introduced by P. Drude in the early
1900s, with improvements soon after by H.A. Lorentz.

We have now a modern picture of metallic bonding. According to this picture, the metallic bond is more
closely related to the covalent or electron pair bond and resembles the ionic bond. Essentially, the metallic
bond can be said to be an unsaturated covalent bond which allows a large number of atoms to be held
together by mutual sharing of free electrons. Furthermore, the density of electrons between the atoms in
metallic bonding is much lower than allowed by Pauli exclusion principle. This permits the electrons to
move freely from point to point without significant increase in energy.

We have read that the bonds between atoms in solids are made of cohesive and repulsive forces which
holds the atoms at definite distances from each other. It is proper to have an understanding of these forces
upon which the electron structure of atoms depends. Primarily, due to the close proximity of two atoms
places too many electrons into interacting locations, mutual repulsion results. The cohesive and repulsive
forces gets equal when the equilibrium position is reached. We have already remarked in chapter 4 that
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large cohesive forces produce high melting points and fairly large elastic values of materials and higher
mechanical strength.

3. DRUDE-LORENTZ THEORY

Drude, in 1900, postulated that the metals consist of positive ion cores with the valence electrons moving
freely among these cores. The electrons are, however, bound to move within the metal due to electrostatic
attraction between the positive ion cores and the electrons. The potential field of these ion cores, which is
responsible for such an interaction, is assumed to be constant throughout the metal and the mutual repulsion
among the electrons is neglected. The behaviour of free electrons moving inside the metals is considered
to be similar to that of atoms or molecules in a perfect gas. The free electrons are, therefore, also referred
to as free electron gas and the theory is accordingly known as Drude and Lorentz's classical free electron
theory. The movement of electrons obeys the laws of the classical kinetic theory of gases. Lorentz in 1909,
applied Maxwell-Boltzmann statistics to the electron gas with the following two assumptions:

(i) The mutual repulsion between the negatively charged electrons is negligible.

(if) The potential field due to positive ions within the crystal can be assumed to be constant everywhere.

Since the electrons move freely inside the metals irrespective of the crystal structure, the ratio of the
electrical conductivity, ¢, to the thermal conductivity, &, should be constant for all metals at a constant
temperature, i.e.

9 _ constant (1)
k

This is called the Wiedemann-Franz law and has been realized in practice.

This theory explained a number of properties of a metal, e.g. electrical conductivity, thermal conductiv-
ity, luster and opacity. The main drawbacks of this theory are:

(i) The theary correctly predicted the room temperature resistivity of various metals but the temperature
dependence of resistivity could not be established accurately. The theory predicted that resistivity
varies as +/ T whereas actually it is found to be linearly with temperature.

(if) The theory yielded incorrect magnitudes of the specific heat and paramagnetic susceptibility of
metals.

The above shortcomings of Drude-Larentz theory were removed by Sommerfeld in 1928. He applied
Fermi-Dirac statistics instead of Maxwell-Boltzmann statistics. The possible electronic energy states in the
potential energy box and the distribution of electrons in these states are then determined using quantum
statistics.

4. SOMMERFELD FREE-ELECTRON THEORY

The basic assumptions of this theory are:

(i) The valence electrons in a metal are free.

(if) Valence electrons in a crystal are confined to move within the boundaries of a crystal. Obviously, the
electrons within the crystal have a lower potential energy than outside. We must note that the potential
energy of an electron is uniform or constant within the crystal (Drude theory).

(i} The electrons are free to move within the crystal, but are prevented from leaving the crystal bound-
aries by very high potential energy barriers at its surface.

(iv) The allowed energy levels of an electron, bound to a single atom are quantized.

(v} The electronic specific heat of metals is very low.

We consider the one dimensional and three dimensional cases separately.

4.1 Free Electron Gas in One-Dimensional Box

Consider an electron of mass m which is bound to move in a one dimensional crystal of length as shown
in Fig. 5.1. The electron is prevented from leaving the crystal by the presence of a large potential energy
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barrier at its surfaces. The potential energy everywhere within the V= v
crystal is assumed to be constant and equal to zero. Thus we have
VX =0for0< x< L

V() =eccfor x<0and x2 L (1

Sommerfeld, in his free electron quantum theory assumed that the v | e
potential of an electron in a metal is uniform. He applied the one
dimensional Schrédinger equation X=0 x=1L
-~ [ —>
d’ v, + 87° m (E ) _0 @ Fig. 5.1 Potential well (one dim-
i JE n Vo= ensional) bounded by
infinite potential energy
to calculate the total energy E,, where i, is the wave function of the hireaes

electron occupying the nth state the E,, represents the kinetic energy
of the electron in the nth state and V is its potential energy. The potential energy everywhere within the
crystal is assumed to be constant and equal to zero. Therefore the Schrédinger equation (2) becomes

d v, 8m*m
dxzn TR Faba =0 i

The general solution to this equation is
W, (X = Asin kx+ Bcos kx (4)

where Aand Bare arbitrary constants to be determined from boundary conditions. One obtains A= \/2/L

and B =0 and & is given by
4rmE,
k= 1’— (5)
h

One obtains the following expression for the allowed discrete energy values

Vg

E =
" 8mi?

(6)

where n=1,2,3 ...
Obviously E o= 1
The number 7 is called the quantum number. The energy spec-

trum consists of discrete energy levels where the spacing between T -
the levels is determined by the values of nand L. It decreases with
increasing L. If L is of the order of a few centimeters, the energy o 207
levels form almost a continuum. But if L has atomic dimensions, the 5 NTE‘ 15
spacing between the levels becomes appreciable. The plot of E, =
versus 11 is shown in Fig. 5.2. The energy levels and wave functions ?‘E 1or
corresponding to n =1, 2, 3 and 4 are shown in Fig. 5.3. Thus, we & 5}
find that if the total number of electrons to be accommodated is

seven, the energy levels with n < 4 would be occupied while the
level with n > 4 would be empty. The topmost filled energy level at
0K is known as Fermi level and the energy corresponding to this Fig.5.2 E, versusaforaone-dim-
level is called the Fermi energy, Ef. ensional crystal
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Energy in units of (h%8 mL?)

a L
X—>

Fig. 5.3 First four wave functions (solid lines) and the corresponding energy levels (broken lines) of
an electron in a one dimensional crystal

Free Electron Gas in Three Dimensions

The eq. (6) is the expression for energies in one dimension only. The corresponding three-dimensional case
would be one in which an electron maves in all directions so that quantum numbers n, n, and n, are
required corresponding o the (hree coordinate axes. In terms of a cubically shaped block of metal of side
L, one obtains the expression for the allowed energles as

H 2 2, 2
E = ny +m, +n (7)
n BmLZ ( X ¥y 2)
- (e nt) 1)
8 m/A?

The integers n,, n and n, are the first three quantum numbers of an electron and v= L3 is the volume of
the assumed metal cube. The expression (7) gives the energies of free electrons in a metal. We must note
that expressions (6) and (7) are of the same form, except for the number of integers. We must note that
for various combinations of three integers n, n,and n, (e.g., 211, 121 and 112), one obtains the same
energy value or level. However, each combination of integers represents a different wave function, having
the same energy. Such an energy level is said to three fold degenerate.

From de Broglie relation, we have

Iy
4o 2L ;
mv n ;
|
and wave number k= ZT;: i
Using these relations, the expression (6) can be written as i
|
2 I
E,- X ®) L -
8 mn®

Fig. 5.4 Parabolic relationship
between energy and
wave number

we can see that the relation between energy and wave number ob-
tained is parabolic (Fig. 5.4).
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5. FERMI-DIRAC DISTRIBUTION FUNCTION
(Electron Energies in a Metal)

The total values of energies of the valence electrons in a metal is given by Eq. (7). From Eq. (7) it is

obvious that among energies E|, E,, E,, etc., each energy value is greater than the preceding value by the

same amount E,. As stated earlier, for each different set of (1, n,

1), there is an energy state. The number of states that have a given

energy increases rapidly with increase in the number of different

values of n,, n,, n, We must note that any change in these values A
influences the change in E by the square of their values (nﬁ, njz,, n’ ) . g

This means the number of states in a metal is very large. If a plot is
made for the number of states per interval of energy N(E) or density
of states V, the total energy £, N(£) increases parabolically with o]

increasing E (Fig. 5.5). Fig. 5.5 Density of energy levels

We know that the valence electrons have a tendency to occupy the of free electrons in a
lowest available energy states in a system. However, it is essential 1o solid vs energy
consider all the electrons in the single system because of mutual
interactions among all the electrons in the single system due to the mutual interactions among all the
electrons forming the electron gas. This is possible only when we apply Pauli exclusion principle. We know
that according to Pauli exclusion principle, only two electrons can occupy a given state, specified by the
three quantum numbers (n,. n,, n,), one with spin up and the other with spin down or opposite spin. If the
metal is in its ground state, which occurs at absolute zero, all electrons occupy the lowest possible energy
levels compatible with the exclusion principle, as indicated in Fig. 5.6. If the total number of electrons per
unit volume (say ny) is less than the total number of energy levels available in the band, the electrons will
then occupy all energy states up to a maximum, designated by E, .. The value of E,_, depends on how
many free electrons there are. The maximum energy level (E_, ) called the Fermi leve! and all quantum
states in the energy levels above this level are empty (Fig. 5.6). The level at which the probability of
occupation is 50% is the Fermi level, Ep. If we want to remove an electron from the Fermi level and take
it out of the metal, some energy is required. This is called the work function and usually denoted by ¢,
which is equal to the energy normally measured when an electron is removed from the surface of the metal.
Since thermal energies are very small compared with the Fermi energy, only a very few electrons are excited
above the Fermi energy even at room temperatures. For that reason the work function is practically constant
over a wide range of temperatures. We must note that at 0°K and electron in the Fermi level possesses the
highest energy of the electrons in the metal and is the easiest to remove.

We now discuss the effect of temperature on the electron energy levels. It is apparent that, for tempera-
tures greater than 0K, the Fermi level may not be the topmost filled level since some of the electrons from
the filled energy levels may be excited to the higher levels. The probability that a state at a level of energy
E'is occupied by an electron at T= 0°K is constant and equal to 1 (unity) upto the Fermi level Epand zero
above it. When the temperature ol the system is raised, excited electrons move into the new energy levels
(Fig. 5.7). Thus some of the levels below £, . would be empty while some above it would be occupied.
The probability that a particular quantum state of energy E is occupied at a temperature T'is given by the
so called Fermi function.

»E

1
1+exp { E- Ep /kT}]

1B - @)
[

The above also represents the change in electron energy distribution, i.e. _[N(E,) = f{E). Here fN(E)

represents the probability that a state of energy FE is occupied at temperature T. Thus at 7= 0°K when
E < Ep, the exponential term in Eq. (a) becomes zero and
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Fig. 5.7 Distribution of free electrons among

Fig. 5.6 Filling of energy levels by electrons
8 & By Y energy states (excited state)

fiB) = [NE) =1
when E > E, the exponential term becomes infinite and

ﬂE):jN(E):[] T=0%K

1
i _ _1 -47 Fermi distribution

By putting [ MF) = AE) = 2 : \ function
one can easily see that E' = E. Obviously, at absolute IIE]E _________________
zero all states above E = E are empty and all states Tz0ie T>0K
below Ejare occupied (Fig. 5.8). The Fermi distribution >

0 E
function is a step function. F E

At any temperature one can define the Fermi level as  Fig. 5.8 Probability of occupancy by an

that level for which the occupation probability is 1/2. electron at various temperatures
The values of Fermi energy for few metals are given in different from absolute zero
Table 5.1.

Table 5.1 Fermi energy
Metal Li Na K Rb Cs Cu Ag Mg Al
Fermi energy, Ep (eV) 4.72 3.12 2.14 1.82 1.53 4.07 5.54 7.3 11.9
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11. EQUATION OF MOTION OF AN ELECTRON

According to Drude-Lorentz theory, the motion of electrons is random (when no electric field is applied).
Obviously, the number of electrons in a metal moving from left to right at any time is the same as that
moving from right to left. This shows that no net current flows through the metal. However, if we apply
an electric field across a metal, the electrons move in the positive direction of the field and current is
produced.

Let us consider that an electron within a metal moving in any direction and at any time under the applied
field *E’. Let m is the mass of an electron, v is the velocity of the electron and e be the charge on the
electron. The force experienced by an electron due to the applied electric field, E is

F=eE (13)
Due to this force, the electron moves with an average acceleration, d’x/df (= dvidf). The force with which
the electron moves,

F=m L (14)
dt
from (13) and (14), we have
av = ek
dt
Electron Theory of Metals 167
ek
or dv= — |dt
jav- £ |
or V= £ t+ K (15)
m

where K is constant of integration, which represents the random velocity of the electrons. The average value
of random velocity must be zero, otherwise there will be a flow of current even in the absence of external
field. Thus K = 0. We have from Eq. (15)

v= 2E , (16)
m
Obviously, velocity is directly proportional to time “f'. This clearly reveals that the velocity of an electron
continues to increase with time till the collision does not occur. Now, if ‘¢ is the collision time, i.e. average
time between the two successive collisions, we have the average velocity of the electron
el t
o Y=# (17)
m e m
Equation (17} is called the equation of motion of an electron under the applied electric field. The average

velocity is also called as ‘drift velocity', because the drift in electrons is due to applied field (E).

V =
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15. MEAN FREE PATH

One can define a metal as a substance, which consists of a lattice of a positive ion cores held together by
means of a loosely bound valence electrons, also called gas of electrons or delocalized electrons. We know
that these electrons have a wave characteristics as they move throughout the metal. When waves travelling
through a periodic structure, i.e., a structure which has uniform repetition, proceed with a minimum inter-
ruption. Any irregularity in the periodic, i.e. repetitive structure, through which the wave travels, will deflect
the wave. Obviously, when an electron is travelling towards the positive electrode, a foreign or displaced
atom could cause it to be reflected towards the negative electrode.

We must note that while moving towards the positive electrode, electrons continuously acquire addi-
tional momentum and hence more velocity. And when electrons move towards the negative electrode, they
continuously lose momentum and hence velocity. Thus the distance between reflections and deflections
determines the net or drift velocity of electrons. Obviously, mean free path is an average distance which
an electron covers in its wavelike pattern without any reflection or deflection. Mathematically, one finds
the following relation for mean free path,

A= vt 27)
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where v — velocity of an electron and ¢ — collision time or mean free time.

For metals, the velocity of an electron corresponds to that of Fermi energy (Ep) and is given by the
relation

2Wg
m
where W — Fermi energy in Joules (= 1.602 x 107" times the Fermi energy in electron volts, i.e. 1.602

x 107'% Ep) and m = 9.1 x 1073 kg.

Example 7 (i) Estimate the maximum velocity of an electron in a metal in which Fermi energy has a
value of 3.75 eV. Given e = 1.602 x 107'° C and m = 9.1 x107%" kg. (i) What will be the mobility of

electrons when the mean free time between the collisions is 107" §7 M Qe
Solution We=1.602 x 107° 189
Ep=1.602 x 107'° x 3.75
=6 x 10719 ]

, 2Wy 2x6x107"
i) vp= = m/s
m 9.1x 1073

= 1.76 x 10° m/s
et 1.602x1071% x 1071 .
(i) u= —= = 1.76 x 10~ m“/V-s
m 9.1x107
Example 8 The Fermi level for Potassium is 2.1 eV. Estimate the velocity of electrons at the Fermi level,
Given e = 1.6 x 1071° C and m = 9.109 x 107 kg. [B.E]
Solution Ep= 2.1 eV

e=1602 x 107 C
m=9.109 x 107 kg
t=10"s
Wr= 1,602 x 107 Ej
=1.602 x 1009 x 2.1 ]
=3.364 x 10719 ]

- [2W;  [2x3.364x107" a8 s 1055
& m 9.109 % 1073! ) ’

Example 9 FEstimate the mean free path of free electrons in pure copper at 4 K. The collision time
for photon scattering at 4 K is 107 Y s. The Fermi energy level for copper is 7 eV. Given: e = 1.602 x
10" C and m = 9.109 x 107% kg.
Solution t=107s
Eo=T7¢eV
e=1.602 x 1079 C
m=9.109 x 10 kg
Wr= 1602 x 10" E,
=1.602 x 1079 x 7
=112 x 1077 ]

The velocity of electrons,
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Velocity of electrons,

m 9.109 x 107!
= 1.57 x 10% m/s

JZWF Jlel.leD"g
Vp= = m/s

Mean f[ree path
A= vz t=157 x 10° x 107 = 1.57 x 107 m = 1.57 mm

Example 10 Find the conductivity of copper at 300 K. The collision time (7} for electron scattering
Zx10"sat 300K Givene = 9.1 x 107 kgand m = 9.1 x 1077 kg [B.E.]

Solution The number of electrons per m® of copper is obtained as

6.023 x 1023 % 8960

n=
0.06354
= 850 x 10%%/m?
We have, conductivity
né
0‘:
m

8.50 x 10%8 x (1.602 x107"%)2 x 2 x 107M
0.1x10™H
=48 % 10" Ohm™-m!
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2, ELECTRICAL CONDUCTION
One of the most impartant characteristics of a solid material is the ease with which it transmits an electric
current. Ohm’s law relates the current [ (i.e., the lime rate of charge passage, Q/t, Q — Charge and ¢ —
lime) to the applied voltage V as follows:

V=1IR (1
where R is the resistance of the material through which the current I is passing. The units of V, Jand R
are Volt, ampere and Ohm respectively. The electrical resistivity () of solids is probably the most impor-
tant of all physical properties. The value of electrical resistance is influenced by specimen configuration,
and for many materials is independent af current. However, the resistivity (p} of material is independent
of specimen geometry but it is related to R through the relation

_ RA
p- 2 (2)

where [is the distance between the two points of the specimen at which the voltage is measured, and A is
the area of cross-section perpendicular to the direction of the current. The units of p are Ohm-meters (2
— m). From Eqgs. (1) and (2),
VA
= — 3
P= @)

Many factors influence the value of p for a given material. Values of resistivity of common materials at
20°C are given in Table 14.1 and few engineering materials are given in Table 14.1(a).

Table 14.1 Resistivity of some common materials at 20°C

Material Reststivity (p) (2 — m) Material Resistivity (p) (2 — m)
Silver 1.6 x 1078 Germanlum 107° to 0.6
Aluminium 266 x 107° Silicon 107° to 2.5 x 10°
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Table 14.1 (Contd)

Material Resistivity (p) (2 — m) Material Resistivity (p) (2 — m)
[ron 91 x 1078 PVC 10 x 100
Copper 167 x 1078 Bakelite 1.0 x 10"
Nickel 133 x 1078 Mica 10 x 10"
Carbon-steel 1.7 x 1077 Glass 10 x 106
Polythene 10 x 10' Stainless steel 70 x 107
Graphite 14 x 107 Steatite Porcelain 10 x 101
Alumina 10!
Diamond 10"

Table 14.1(a) Room temperature electrical resistivity for few engineering materials

Material Electrical Resistivity (2 — m)
Steel alloy 1020 (annealed) 1.60 x 1077
Steel alloy 4140 (quenched and tempered) 220 x 1077
Steel alloy 4340 (quenched and tempered) 248 x 1077
Stainless steel alloy 440 A (annealed) 60 x 1077
Stainless steel alloy 17-7 PH (annealed) 83 x 1077
Gray irons

e Grade G 1800 150 x 10°°

e Grade G 3000 95 x 107

e Grade G 4000 85 x 107
Ductile irons

e Grade 60-40-18 55 x 107

e Grade 80-55-06 62 x 1077

e Grade 120-90-02 62 x 107
Aluminium alloy 7075 (T 6 treatment) 522 x 1078
Aluminium alloy 356.0 (T 6 treatment) 442 x 1078
Copper alloy C 3600 (free cutting brass) 66 x 107°
Copper alloy C 71500 (copper-nickel, 30%) 375 x 10°®
Magnesium alloy AZ91D 17.0 x 10°®
Titanium alloy Ti — 5Al — 2.55n 157 x 1077
Nickel 200 095 x 107
Inconel 625 12.90 x 1077
Monel 400 547 x 1077
Haynes alloy 25 89 x 1077
Invar 82 x 107
Super invar 80 x 1077
Kovar 49 x 107
Lead-tin-salder (60 Sn — 40 Pb) 150 x 1077

The resistivity of some widely used metal and their alloys along with their temperature coefficient are

given in Table 14.2.

Table 14.2 Electrical resistivity of some metals and their alloys

Metals and Resistivity (p) at Temperature
alloys 20°C (£2-m) coefficient a/°C
e Copper, annealed 1.67 x 107 429 x 107 (0-100°C)
e Copper, reduced 75% by cold drawing 1.71 x 107 —

(Contd)
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Table 14.2 (Contd)

Metals and Resistivity (p) at Temperature
alloys 20°C (2-m) coefficient o/°C

e Cartridge brass annealed 70% Cu and 30% Zn 6.20 x 10 1.48 x 1077 (20°C)

e Aluminium, annealed 265 x 10" 429 x 1077 (20°C)

e [ron, annealed 971 x 108 6.57 x 107 (20°C)

e Constantan 55% Cu and 45% Ni 49 x 107 0.02 % 1073 (25°C)

e Manganin 84% Cu, 12% Mn and 4% NI 4 x 107 0.009 % 1073 (25°C)
-0.42 x 107 (100°C)

e Nichrome 80% Ni and 20% Cr 108 x 10°° 0.14 x 1073 (0-500°C)

3. ELECTRICAL CONDUCTIVITY (o)
Somelimes, electrical conductivily (0) is used to specify the electrical character of a material. Electrical
conductivity is simply the reciprocal of resistivity (p), i.e.

o=1 )

p
Electrical conduclivity is indicative of the ease with which a malerial is capable of conducting an electrical
current. The units of o are reciprocal Ohm-meters [(Q-m)~'] or mho/m. It Is also expressed in Siemens/m.

When an electric field £ is applied to a conductor an electric current begins to flow and the current
density by Ohm's law is

J=oFE (5)

The conductivity may be defined as the movement of electrical charge from one point to another and
it depends on the number of charge carriers (1), the charge per carrier (€) and the mability of carrlers (),
i.e.

o= nell (6)
The unit of mobility () is m® V~'s™. Mobility is an important term in the study of semiconductors.

One can obtain the expression (6) from first principle as follows:

Let E be the electric field applied to a conductor, e be the charge on the electron and m the mass of the
electron. The electrons move in a specific direction under the influence of the electric field. The directional
motion of a free electron is called a drift. The average velocity gained during this drift motion is termed
as drift velocity.

As electron is being negatively charged particle, the force acting on it under the electric field intensity
E is,

F=_eF (7
The electron drift is in a direction opposite to that of the applied field. During the accelerated motion, the
electron collides with the defects in the lattice. As a result of the consequence scattering, the electron loses
the velocity it gained from the electric field. The effect of the crystal lattice may be reduced considerably
due to a retarding farce (may be due to damping). This force is proportional to the velocity v and mass m
of the electron. The retarding force is represented as —a@mv, where ¢ is a constant. We can write the
equation of motion of the electron as

dv

m— = —eE = —amv (8)
dt
or dv = eE dt
m
or V= _eE t + constant )]
m
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If the average time between collisions is 27 then, during this time, the electron is acted upon by a force F'
given by Eq. (7). But at £=0, v= 0 (immediately after each collision) and hence the integeration constant
in (9) is zero. Thus (9) takes the form

Obviously, the mean velocity = —eFE 7/m, where 7is called the relaxation time and is time interval in which
there is unit probability of a collision.

When there is a collision of lattices (resistance), the current density Jdue to nelectrons per unit volume
of charge e and drift velocity v is expressed as

J= nev (10)
= ne (@) (11)
m
= ok (12)
né® ©  ne(er)
o= A = (13)
E m m
The velocity in a unit electric field, i.e. ¥ E is the mobility () of the electron. Hence
E Elv\ m m
Using Eqgs. (10) and (12), one obtains
J= neuE
and o= nel (14)

Equation (14) is of immense importance for solid materials. From (14), we note that the electrical conduc-
tivity depends on two factors: (i) the number 7 of charge carriers per unit volume and (7} their mobility,
73

Solid materials exhibit an amazing range of electrical conductivities, extending over 27 orders of mag-
nitude; probably no other physical property experiences this breadth of variation. In fact, one way of
classifying solid materials is according to the ease with which they conduct an electric current. Within this
classification scheme, one can classify materials into three broad categories:

(i) Conductors (ii} Semi conductors and (iii) Insulators
Metals and their alloys are good conductors. Copper, silver and gold are among the best conductors of
electricity, followed by aluminium, iron and nickel. Some semimetals, e.g. graphite also fall in this group.
According to free electron theory, when the outer orbit of an atom has less than one half of the maximum
8 electrons, the material is usually a metal and a good conductor of electricity. Metals have conductivities
on the order of 107 (Q-m)~!. The electrical resistivity of conductor range from 10 to 10 (Q-m).

Semiconductors are materials which behave are insulators at 0 °K but a significant rise in electrical
conductivity is observed as the temperature rises. At room temperature, the electrical conductivity of
semiconductor falls between that of a conductor and insulator. The electrical conductivity semiconductors
ranges from about 10° to 10~ (€2-m)~!, as compared with the conductivity on the order of 107 (Q- m)™ for
good conductors and minimum conductivity of 107 (Q — m)~! for good insulators. Semiconductors form
the base materials for a number of electronic devices. Germanium and silicon are the widely used common
semiconductors. According to free electron theory, when the outer orbit of an atom has exactly one-half
the maximum eight electrons, the material has both metal and non-metal properties and usually exhibit
semiconducting properties. We must note that the electrical resistivity of a semiconductor is usually strongly
dependent on temperature.

There are also materials with very low conductivities, ranging between 107!% and 10-%° (Q-m)~'. These
are electrical insulators. Mica, PVC, rubber, porcelain and bakelite are few examples of insulators. The
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resistivity range of insulators extends from 10* to 10'7 (Q-m). According to electron theory, when the outer
orbit of an atom has more than one half of the maximum eight electrons, the material is usually a non-metal
and non-conductor.

A brief comparison between metals, semiconductors and insulators is presented in Table 14.3.

Table 14.3 A comparison between conductors, semiconductors and insulators

Conductors

Semiconductors

Insulators

. Conductivity decreases with in-
crease in temperature upto nearly
zero value

. Conductivity of metals is of the
order of 107 (-m)™!

. Electrical resistivity is very low
and range from 107 to 107*
(Q-m)

. Temperature coefficient of resis-
tance is not constant

. At low temperatures they exhibit
semiconductivity. At very low
temperatures, some elements and
their alloys exhibit infinite con-
ductivity, i.e. super conductivity

. Have unfilled overlapping energy
bands

. Current carriers in conductors are

free electrons which exist whether
external field is applied or not

Conductivity increases with in-
crease in temperature. Conductiv-
ity is particularly sensitive to im-
purity type and content.
Conductivity of semiconductors
range from 107 to 10! (Q-m)™!

Resistivity is normally high and
range between 107% to 10° (Q-m)

Temperature coefficient of resis-
tance is negative

At low temperature semiconduc-
tors become dielectrics (insula-
tors)

Have filled energy bands and
small forbidden zones

Current carriers are originated
due to absorption of electrical,
radiant or thermal energy from
external source. Electrons and
holes, both serve as current carri-
ers

Conductivities increases with in-
crease in temperature

Conductivity of insulators range
between 107'° to 1072 (Q-m)~*

Resistivity is very high and range
between 10* to 10'7(Q-m)

Negative resistance temperature
coefficient. Probably with the rise
in temperature some electrons
reach to the conduction band.

No change in the properties of the
insulators observed

There is a large energy gap in

between valence and conduction
band

Energy required for electrons to
cross the energy gap between con-
duction band and valence band is
very large and hence no conduc-
tion

Scanned with CamScanner



440 Material Science

7. ELECTRICAL RESISTIVITY OF METALS

Most metals are extremely good conductors of electricity. Room temperature conductivities of few common
metals are given in Table 14.3. Metals have high conductivities due to the large number of free electrons
that have been excited into empty states above the Fermi energy. Obviously, n has a large value in the
conductivity expression (14).

Table 14.3 Room-temperature electrical conductivity for few metals and alloys

Metal or alloy Electrical conductivity (2-m)™"
Copper 60 x 107
Silver 68 x 107
Gold 43 x 107
Aluminium 38 x 107
Tron 10 x 107
Platinum 0.94 x 107
Brass (70 Cu — 30 Zn) 16 x 107
Plain carbon steel 06 x 107
Stainless steel 02 x 107

Let us now discuss conduction in metals in terms of the resistivity (the reciprocal of conductivity).

‘The crystalline defects serve as scattering centers for conduction electrons in metals and increase in their
number raises the resistivity, i.e. lowers the conductivity. The concentration of these imperfections depends
on temperature, composition, and the degree of cold work of a metal specimen. It has been observed
experimentally that the total resistivity of a metal is the sum of the contributions from the thermal vibrations,
impurities and plastic deformation; i.e., the scattering mechanism act independently of one another. Math-
ematically, we can write this as follows:

Piotal = Pe+ Pi+ Pa (15)
where p, p,and p, are the individual thermal, impurity and deformation resistivity contributions, respec-
tively. Equation (15) is sometimes called as Mafthiessen’s rule. Figure 14.6 shows a plot of resistivity
versus temperature for copper and several copper-nickel alloys in annealed and deformed states. Figure also
show the influence of each p variable on the total resistivity. The additive character of the individual
resistivity contributions is demonstrated at —100°C.

7.1 Factors Affecting Resistivity

(i) Influence of Temperature: Any rise in temperature of a conductor (which contains small amounts of
impurities) increases thermal agitation of the metallic ions as they vibrate about their mean position. This
reduces the mean free path and restricts the free movement of electrons, thus reducing the conductivity of
the metal, i.e. this increases the resistivity of metal. For the pure metal and all the copper-nickel alloys
shown in Fig. 14.6, the resistivity rises linearly with temperature above about —200°C. Thus

= pO 4+ HT (16)
where p,and a are constants for each particular metal.

(ii) Influence of Impurities: Another factor which reduces the mean free path of electrons is the impurity
or solute atoms. The solute atoms provide the breakage in the regular crystalline structure, thus presenting
an obstacle in the movement of electron waves. A solid solution alloy will always have lower conductivity
than its pure components though both individual components have higher conductivity than the alloy. For
additions of a single impurity that forms a solid solution, the impurity resistivity p, is related to the impurity
concentration C, in terms of the atom fraction (at %/100) as follows:

p,=AC, (1 - C) (17)
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Fig. 14.6 The electrical resistivity vs. temperature curves for Cu and three copper-nickel alloys, one of
which has been deformed. The contributions to the resistivity due to thermal, impurity and
deformation are shown at —100°C

where A is a composition-independent constant that is a function of both the impurity and host metals. The
influence of Ni impurity additions at about room temperature resistivity of Cu is shown in Fig. 14.7, upto
50 Wt% Ni; over this composition range Ni is completely soluble in Cu.

We may note that Ni atoms in Cu act as scattering centres, and increasing the concentration of Ni in Cu
results in the enhancement of resistivity.

One can use the rule of mixtures expression for a two-phase alloy consisting of & and [ phases to
approximate the resistivity as follows:

Pr=PaVe+ PVp (18)

where the V's and p's represent volume fractions and indi-
vidual resistivities for the respective phases.

(iii) Influence of Plastic Deformation: Plastic deformation
also raises the electrical resistivity as a result of increased
number of electron-scattering dislocations. The effect of
plastic deformation on resistivity is also shown in Fig.
14.6.

(iv) Effect of Pressure: At room temperature the general
behaviour of p of metal is to decrease initially with increas-
ing pressure and it may pass through a minimum. The ini-
tial decrease is due to the effect of pressure in reducing the 0 l | | 1
amplitude of lattice vibrations. The subsequent increase is 0 10 20 30 4050
probably due to modification of the electron band structure Composition (Wt Nj)

which leads to increased phonon scattering. Fig. 14.7 Room temperature electrical
resistivity vs. composition for
Cu-Ni alloys

Electrical resistivity (x107% Q-m)
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